
Advice report

EUROPEAN COMMISSION

Enterprise Directorate General

IDA/GPOSS

Encouraging Good Practice in the use of Open Source Software in Public Administrations

GUIDELINE FOR PUBLIC ADMINISTRATIONS

ON PARTNERING WITH FREE SOFTWARE DEVELOPERS

Revised Final version: December 2005

Prepared by:

 UNISYS

Rishab Aiyer Ghosh (Merit)

GPOSS adv-1 21 October, 2004 1

Ruediger Glott (Merit)
Gregorio Robles (Universidad Rey Juan Carlos)
Patrice-Emmanuel Schmitz (Unisys)

Disclaimer

The views expressed in this document are purely those of the writer and may not, in any

circumstances, be interpreted as stating an official position of the European Commission.

The European Commission does not guarantee the accuracy of the information included

in this study, nor does it accept any responsibility for any use thereof.

Reference herein to any specific products, specifications, process, or service by trade

name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its

endorsement, recommendation, or favouring by the European Commission.

All care has been taken by the author to ensure that s/he has obtained, where necessary,

permission to use any parts of manuscripts including illustrations, maps, and graphs, on

which intellectual property rights already exist from the titular holder(s) of such rights or

from her/his or their legal representative.

GPOSS adv-1 21 October, 2004 2

1) Executive summary .. 4
2) Introduction to free software development ... 6

a) What is free software?.. 6
b) Organisation of free software developer communities ... 8
c) Motives of free software developers .. 8

3) External incentives ..10
a) How free software projects relate to external funding...10
b) How free software projects relate with specific user communities..11

4) How to collaborate with free software developers...12
a) Identify the “seed” – what will attract developers? ...12
b) Disseminate to reach out to the developer community ..13
c) Attract a community to solve a problem (e.g. LinEx, Spanish Linux for Extremadura)..13
d) (or) Attract a community to support a pre-existing software application ..15
e) Provide or identify collaborative development infrastructure (e.g. Berlios, US-based SourceForge)15
f) Cooperate and proactively provide feedback...16
g) Identify community leaders...17
h) Identify selection mechanism to balance competition with cooperation between developers18
i) Identify funding methods if required...18
j) Monitor and evaluate results ...20
k) Involve other public administrations ...20

5) Legal relationships...21
a) Identify the relationships ...21
b) Possible cases, and corresponding contractual relations..23

i) Case 1 (solution developed from scratch for the PA)..24
ii) Case 2 (Specific open source software, found externally) ..26
iii) Case 3 (solution developed by a PA, with possible pooling or reuse)...27
iv) Case 4 (Specific solution, developed internally by the PA, so far) ...28
v) Case 5 (same as 4, with a service partner) ..29

c) Choosing the licence ...29
d) Recommendations concerning the license...31

Appendix 1: Organisation, motivation and external interaction...34
e) How free software developer communities work ..34
f) Organisation of free software developer communities ..35
g) Motives of free software developers ...36
h) How free software projects interact with external feedback..39
i) Paying for free software ..40

Appendix 2: A closer look at selected development projects...43
j) FreeBSD 43

i) History of FreeBSD ..43
ii) Development in FreeBSD...44
iii) Decision-taking in FreeBSD...45
iv) Companies around FreeBSD...45
v) Statistics of FreeBSD..46

k) KDE 46
i) KDE development ..47
ii) Statistics of KDE ..48

l) GNOME 48
i) The GNOME Foundation ...48
ii) Industry around GNOME ...49
iii) Statistics of GNOME..50

m) Debian GNU/Linux ...50
i) Statistics of Debian ...52

n) GNU/LinEx...52
References... 54

GPOSS adv-1 21 October, 2004 3

1) Executive summary

In recent years, Free1 / Libre / Open Source Software (FLOSS) has developed as a

novel form of collaborative production. Since its origin as a collaboration between

individual volunteers, it has seen tremendous success, both in terms of the commercial

and technical strengths of the produced software itself, but also as a model of

organisation and development. In particular, it has received much attention from public

administrations (PAs) for two reasons: the software itself may be cheaper to use and

support than proprietary software applications; and free software may be a novel, cost

effective and highly responsive way to develop applications specific to PA needs. The

second point takes advantage of the modifiable nature of free software, which makes it

suitable for adaptation to PA needs.

PAs may be interested in working with free software projects in order to take

advantage of their adaptability, low cost and the ability to engage with the large

developer community. This document aims to help PAs achieve this successfully. It starts

with an overview of the free software phenomenon, the structure of free software project

organisation and developer motivations. Following this is an overview of how free

software projects respond to external inputs, financial as well as on user needs. Chapter 4

provides step-wise guidelines on how PA’s can successfully engage with free software

communities, from the technical, social and economic perspectives.

Chapter 5 elaborates practical guidelines on the legal framework of collaboration

between free software developers and PA’s: solution will greatly differ depending on the

fact the software was developed by the PA, for the PA, or found externally to the PA; it

will differ if the software answers to very generic or very specific needs: it will differ if

the software was written from scratch or build from various components or building

blocks found elsewhere with their own inherited licenses.

1 „Free“ is always used here in the sense of freedom, except when we write „for free“.

GPOSS adv-1 21 October, 2004 4

It must be noted that successfully engaging with the free software developer

community requires a good understanding of how and why free software development

works, in order to determine why free software developers would want to collaborate

with your specific PA-supported effort. To support this, Appendix 1 provides more

details on the workings and motivation of community participants and Appendix 2

provides details of how some successful free software projects actually work.

GPOSS adv-1 21 October, 2004 5

2) Introduction to free software development

a) What is free software?

In recent years, Free / Libre / Open Source Software (FLOSS) has developed as a

novel form of collaborative production. It started as a collaboration between individual

volunteers, often academics or students. It has grown into something that the world’s

biggest companies and public organisations depend on as users and as businesses2. It has

seen tremendous success, both in terms of the commercial3 and technical4 strengths of

the produced software itself, but also as a model of organisation and development: free

software is arguably one of the best examples of open, collaborative, internationally

distributed production and development that exists today. This international aspect has

resulted in tremendous interest in the domain of free software from around the world,

from all communities: government, policy, business, academic research.

Although Free/Libre/Open Source Software is not a new phenomenon, it has

considerably increased in importance in recent years. It is important to distinguish

between the software itself, and the organisation of its production. The terms “free

software” and “open software”, while defined differently (the original four freedoms of

the Free Software Foundation and the much later nine conditions of the open source

software definition5) both refer, strictly speaking, to software itself, and not the process

of its creation. In particular, they refer to software that is released under certain licences,

2 Companies like IBM and Oracle have announced billions of dollars of marketing spending for free
software-related businesses. A study for the US Department of Defense found that stopping their use
of open source would have “immediate, broad, and strongly negative impacts… on the ability to
defend against cyberattacks” (MITRE 2003); websites from Google and Amazon depend on free
software in order to run. Even the World Intellectual Property Organisation, ironically, uses Apache
and Linux on its web server.

3 E.g. HP reports $2.5 billion in Linux-related revenues, growing at 40% annually:
http://www.infoworld.com/article/04/01/15/HNhplinuxrevenue_1.html

4 Performance and security are the top reasons for organisations to choose free software according to the
EC-financed FLOSS User survey: http://flossproject.org/report/index.htm

5 http://www.fsf.org/philosophy/free-sw.html and http://www.opensource.org/docs/definition.php

GPOSS adv-1 21 October, 2004 6

http://www.fsf.org/philosophy/free-sw.html
http://www.opensource.org/docs/definition.php

approved by the Free Software Foundation or by the Open source Initiative (OSI). As it

turns out, the list of approved licences is nearly identical.

It is entirely possible for free software to be written within a company – or public

administration – exactly as if it were intended for commercial release as proprietary

software. If this software is distributed under a free software / free software approved

licence, it is free software. The purpose of this guide, however, is to help public

administrations tap into the enormous resources promised by the most commonly

associated form of production for such software – a large, distributed volunteer

community of developers collaborating in order to produce and improve a software

product. The software licence facilitates such collaboration, as it ensures that contributors

are not hindered in their attempts to improve a given software product – the licence

allows anyone the freedom to use, copy, study, modify and redistribute it, without which

spontaneous or voluntary contributions would be impossible.

The software licence certainly does not guarantee such collaboration. Releasing a

first version of a citizens land records management system under a free software licence

will allow the free software community to modify and improve the system. But it

certainly does not guarantee this. In order to improve the ability to work with the

community of contributors, it is important to understand the collaborative software

development process.

Many aspects of this process still appear unknown or even strange. Economic

exchange relations, as they occur within the community of free software developers as

well as in the traditional parts of capitalist economies, are usually based on the

fundamental principles of monetary payments for production and transactions. However,

these principles seem not to apply to much of the productive activity around free software

(although money is very much present in the related activity of servicing free software

systems), and still this domains functions very well and gains more and more importance

in the leading software markets.

This section provides a brief overview of the organisation, leadership structure

and motivations of free software developers. A more expanded view is found in

Appendix 1, and several resources are available for further details. It is important to

GPOSS adv-1 21 October, 2004 7

realise that the success of partnering with free software developers for public

administrations (or anyone else) depends on a good understanding of how and why free

software communities work. PAs who simply publish requests for support for the

creation of new software, or release some software onto the Internet, and then expect a

vast community of volunteers to selflessly attend to their needs are likely to be

disappointed.

b) Organisation of free software developer communities

The development of software and the cooperation in free software developer

communities differs considerably from developing proprietary software in firms. Free

software is developed as a result of free cooperation of autonomous developers connected

through a highly volatile network organization; proprietary software is usually a result of

hierarchical teams working on clearly sequenced tasks. However, free software, like

proprietary software, requires developers who write code, coordinate work, and maintain

and administer the progress of a project. When a free software project reaches a critical

size, individual people take response for different project tasks and coordinating

institutions and governing structures emerge. These differ from project to project based

on various criteria, including the project’s ties to firms, size, and technical nature, and can

include “benevolent dictators” (e.g. Linus Torvalds as leader of the Linux kernel

development), “rotating dictatorship” (e.g. the Perl scripting language) and

democratically elected committees (e.g. FreeBSD, Apache, Debian). Technical merits,

effort contributed and reputation play a significant role in the determination of leaders

and leadership structures. Based on studies of demographics it appears that free software

developer communities contain not only technical expertise but also a high degree of

management skills.

c) Motives of free software developers

There is a large variety of assumptions as to why people join the FLOSS

community and “work for free”. The first thing to realise is that developers, by and large,

do not “work for free”. They perceive themselves as selfish and self-interested, and

expect returns from their contribution. These returns are not always monetary: learning

GPOSS adv-1 21 October, 2004 8

new skills is the most commonly cited reason for developer participation. But monetary

returns are an important benefit – roughly 50% of developers earn an income through

their free software work, and this accounts for a large majority of the most productive and

experienced developers.

Recognition by peers and society is a motivating factor, but the nature of

reputation is such that it can reward a few leaders, but not the majority of voluntary

participants. It is, however, a factor that can be artificially boosted by PAs at relatively

low cost, by awarding prizes or other forms of public recognition to developers.

Another class of motivators is product-related: developers who have a need that

an existing free software product can’t meet may be willing to fix the software and

contribute their fix back to the community. Similarly, the free software community is

excellent at spotting and fixing bugs in their software.

One key underlying motivator, that often ties into those outlined above, is an

overlap between individuals as developers and the same individuals as users. Generally

speaking, the pool of developers who may find some self-interested motivation to

contribute to a software project is proportional in size to the project’s potential user base.

This can be disadvantageous for PAs when they wish to build PA-specific software (and

advantageous when they want generic software tailored to their needs, as with

Extremadura’s GNU/LinEx based on the generic Debian package). However, the free

software ecology has many examples of niche communities of users with their own niche

community of developers, from precision engineering to hospital information systems.

This attribute can benefit PAs; it could lead to many developers from many PAs and PA-

related businesses collaborating in a PA-specialised niche of developers.

PAs need to understand in depth what motivates developers, and before

attempting to create community-based free software applications will need to have a clear

understanding of why developers would be interested in collaborating with them.

Appendix 1 provides some more details on developer motivations.

GPOSS adv-1 21 October, 2004 9

3) External incentives

a) How free software projects relate to external funding

As described above, free software developers – often through free software

businesses that employ them – are encouraged through direct financial incentives.

Meanwhile, users of free software are often satisfied enough to pay. Hiring an entire team

of developers is not often an option for public administrations, however. Hiring some

developers to lead a project (or contributing existing staff to the development process)

may often be a good idea, as it provides an extent of control over the resulting software at

least in terms of the technical features and timeliness of production. Contracting

developers for service and support of related systems (particularly individual developers

or SMEs) similarly is a direct and straightforward financial incentive, and has been used

for example in the Spanish region of Extremadura (see section 3).

A more innovative approach is the “bounty” model, where an informal

competition or fellowship scheme is run, to provide monetary or other material rewards

to developers who solve particular problems. This has been pioneered by the software

billionaire and philanthropist Mark Shuttleworth6 in South Africa. In 2003, he had

announced a bounty for development on SchoolTool, a free software school

administration system developed in Python. After some proposals and development

efforts, the core development team was selected – led by developer Steve Alexander,

with members in Lithuania and the UK. The bounty was EUR 37,200 for work

commencing 1 September 2003. Shuttleworth’s website announces further bounties for

individuals or teams interested in extending SchoolTool to manage pupil academic

progress and test results, willing to collaborate full-time with Steve Alexander's team.

 The Indian branch of Red Hat announced “the first ever programme of its kind in

the world7” – a scholarship programme somewhat similar to the bounty scheme, that

provides funds for individuals or small groups, particularly students, who develop high

6 http://www.markshuttleworth.com/bounty.html
7 http://www.in.redhat.com/community/rhscholarship.php

GPOSS adv-1 21 October, 2004 10

http://www.schooltool.org/

quality free software solutions or contribute to free software projects. In this case, the

funds are provided after the contribution is made.

b) How free software projects relate with specific user communities

A good example is in healthcare. The US Veterans Administration provides

lifelong healthcare for military personnel, and the US Government developed and

maintained a Healthcare Information System (HIS) called Veterans Health Information

Systems and Technology Architecture (VistA). The huge software system used for this

was proving expensive to maintain, and, under the US Freedom of Information Act,

source code was released into the public domain. This resulted in an initial burden as

users (other health systems and hospitals) assumed that the original authors would

continue to maintain the system, while in fact the original authors wished to encourage a

community to do so. Eventually, the VistA system is supported by foundations,

businesses and the health community around the world, and is widely believed to be the

largest and most widely used HIS application. While the software is free, it has

historically run on proprietary systems (such as Windows or VMS) which support the

specialised programming environment in which VistA is written. OpenVistA is a free

software suite including VistA and enabling tools that allow VistA to run on GNU/Linux.

When the Beaumont Hospital, the largest public hospital in Dublin, decided to

switch to free software (Fitzgerald and Kenny, 2003) it chose VistA as its hospital

management system. While it got support from many members of the VistA community,

including from hospitals elsewhere in Europe, it also joined the community as a

contributor by providing its own feedback. It joined a large community of users that

include the US military health system and the German Heart Institute, Berlin.

As this example shows, though, there is no single monolithic “Free software

community” but lots of different overlapping communities and sub-communities

addressing needs of different groups. These communities tend to automatically be close

to the users whose needs they address as they often are formed out of those users, or

subsets of the more technically adept users. So, free software in healthcare is largely

supported by IT staff at hospitals and healthcare providers along with businesses and

GPOSS adv-1 21 October, 2004 11

supporting organisations around them; free software for bio-tech (e.g. BioPerl, the basis

for the Human Genome Project) originated at the European institutions contributing to

the HGP. Similarly, free software for public administrations is likely to be supported by a

community initiated by PAs themselves.

The next section looks in more detail at some major free software projects (not

specifically related to PAs, but providing an essential understanding of how such projects

function and therefore the context in which PAs must learn to collaborate).

4) How to collaborate with free software developers

The previous sections provided an introduction to the way free software

developers function, how they organise into communities and how such communities

address user needs and grow to absorb their users including those with special interests.

Following case studies to provide an understanding of the context in which PAs must

operate, this penultimate section outlines a step-wise approach that can improve the

chances of fostering a successful collaboration between public administrations and free

software developers.

a) Identify the “seed” – what will attract developers?

Free software is not developed in a vacuum. It requires an initial impetus, which

is usually in the form of software itself. Some software is released as an attempted

solution to a need, and forms the kernel around which more software is written and

around which a community of developers forms. A general public call – from a PA or

anyone – for support to solve a problem is unlikely to work unless accompanied by a

demonstration of efforts made to solve it already. So the best way for a PA to engage a

community is to start with the core of an application being developed in-house, or by

subcontractors, and then released. This core application provides the seed around which a

community of developers can form.

It is also possible to achieve a successful community collaboration if a group of

PAs collaborate formally and develop the core of a software application that can be

released as the “seed” that will grow into a supportive community. Either way, such a

GPOSS adv-1 21 October, 2004 12

software seed is usually an essential pre-requisite to the self-sustaining process of

stimulating the growth of a community.

b) Disseminate to reach out to the developer community

If nobody knows of your needs, nobody will respond to them. If you develop

“seed” software but potentially interested users and developers (including other PAs) do

not learn quickly about it, a community cannot form. Therefore dissemination that is

widespread but reaches the target communities is essential. Several channels exist for

such dissemination, but they are usually either for PAs (e.g. the IDA Open Source

Observatory) or for developers (e.g. Sourceforge). Few dissemination channels are

(currently) specifically addressed to PA developers, however. In some regions such

channels may exist to some degree – e.g. through the AFUL8 organisation in France, or

through the extensive initiatives in Extremadura in Spain. More work is needed to

develop dissemination channels for PAs interested in attracting developers and

collaborators. Initiatives to develop such dissemination channels can involve interacting

with local developer organisations where they exist, or engaging the community, e.g.

Linux User Groups (LUGs) through PA participation (informal using individual PA staff,

or formal through sponsoring events). Other such dissemination channels could include

infrastructure platforms for developers (such as BerliOS, see point (e) below). The

absence of well known dissemination channels for communication between PAs and

developers is a problem yet to be solved.

c) Attract a community to solve a problem (e.g. LinEx, Spanish Linux for

Extremadura)

This is an obvious goal. However, attracting a community to solve a problem

requires that the previous steps are taken first – PAs should first show that they are taking

the initiative to solving the problem themselves, e.g. by creating “seed” software, and that

they are engaging with the community. If the PA efforts build upon applications with

8 Association Francophone des Utilisateurs de Linux et des Logiciels Libres (Francophone Linux and Libre
Software User Association), www.aful.org

GPOSS adv-1 21 October, 2004 13

existing developer communities, attracting this community becomes easier.. To take a

concrete example, GNU/LinEx in Extremadura was developed as a localised version of

the existing, widely supported Debian distribution of the GNU/Linux operating system.

The choice of this distribution was important, as Debian is the only major distribution of

this operating system for which development and integration is not led by an individual

company (such as Red Hat, Mandrake or SuSE/Novell, which control the eponymous

other major distributions). Debian is a purely community effort with hundreds of

integrators responsible for configuring and packaging a suite of software applications

developed by thousands of individual contributors. Thus Extremadura’s first choice tied it

to a community rather than an individual company, immediately embedding it within this

community (Debian has an increasing number of developers from Extremadura and more

generally Spain).

Debian was the foundation, and the seed of the GNU/LinEx project was a

localised distribution paid for by the government. It hired a local software company to

develop a localised distribution of Debian and released that into the wider community.

This quickly developed into a growing local developer community with close links to the

wider group of global Debian developers. It may not always, or even often, be possible to

design the solution to a new PA problem around an application such as Debian, with a

large, existing and very active community. However, PAs should carefully consider how

a community could form around their own problem, and whether a community already

exists that could be persuaded to pay attention to PA needs. As described in Chapter 2, on

the external incentives of open source communities, active participation in getting major

projects to work more in line with needs of PAs can work when PAs are a big user base

and the solutions are not extremely specialised. This is, for instance, quite common in

free software projects like MMBase (especially in the Netherlands where a number of

PAs use it and a number of Dutch businesses have been built around it) or Zope. For

more specialised needs, however, the strategy must be more along the lines of attracting a

community of interested parties around the PA’s specific needs, with the PA clearly

showing (as in steps a and b outlined above, or through financial incentives described in

Chapter 2) its own strong interest and initiative.

GPOSS adv-1 21 October, 2004 14

d) (or) Attract a community to support a pre-existing software application

Another alternative way of attracting a community is to release a fully developed

application of wider interest – planting a tree rather than a seed. This is only possible

when such a fully developed application is available and controlled by the PA. In such

cases, this can often be more successful as the community is not invited to solve a

problem, but to build upon an existing, working solution. Typically, this is software

developed and maintained by public administrators – e.g. VistA, the hospital

management solution – who wish to release it as free software for various reasons. These

could be ideological, or practical – the PA may no longer have a budget to continuously

maintain the software, and as the development costs are sunk costs, the PA may believe

that the software would find a wider community of users who would share in the costs of

maintenance following the free software model. In the example of VistA, a fully

functional hospital management system was released as public domain (as all intellectual

works developed by the Federal Government automatically are, under US law). The large

global community of users that developed around this fully functioning solution led to a

similarly large community of developers to provide support, maintenance and further

development. While this model does not have the potential of the previous route (c) of

saving initial development costs, it does allow sunk development costs to be leveraged

when funds for further development, support and maintenance are limited or unavailable.

In such circumstances, turning to a wider developer community through the application’s

release as free software may be a useful way for PAs to save further costs and derive the

benefits of sharing responsibility for the software’s further evolution.

e) Provide or identify collaborative development infrastructure (e.g. Berlios,

US-based SourceForge)

PAs can provide themselves with channels to reach developer communities by

creating development infrastructure. The American Sourceforge is the best known site

that provides such infrastructure – publicity, webspace, technical, team-management and

version-control utilities that can be indispensable for developers. Such infrastructure

provides a hub around which developer communities form, and developers on one project

in a given infrastructure portal are likely to notice and contribute to new projects on the

GPOSS adv-1 21 October, 2004 15

same portal. Providing infrastructure is also a way of giving back to a community in

exchange for their contributions to solving particular needs. An European example of a

government supported infrastructure site is Berlios (Berlin Open Source), a Sourceforge

like system that has grown into one of the biggest hosts of many German projects. While

there is some discussion as to whether Berlios has been successful at attracting

developers to projects initiated by PAs, it is clear that Berlios has become a major

resource base for European and particularly German developers, with the potential for

exploitation by PAs. This is in contrast to some other PA-related developer portals such

as US-based Governmentforge.org or the global and rather more successful

Schoolforge.org. PA-related software and developers interested in working on PA-related

software can be found on these sites, but unlike Berlios, these sites did not arise as a

result of PA initiatives. Rather, they were created by developers themselves, often with

the aid of private-sector organisations with commercial interests in supporting the

resulting software.

It is worth examining an infrastructure portal that is supported by a coalition of

PAs, which could attract projects of interest to PAs and developers interested in

involvement in such projects. Such a portal, “seeded” with PA-related software projects

already developed by participating PAs, could be an attractive proposition for engaging

developers in further developing such software.

f) Cooperate and proactively provide feedback

It should be emphasised that – as the Linux author Linus Torvalds said – users are

important, because they form the basis for development in the free software model;

therefore it is important to ensure that users in PAs interact extensively with developers

whether such developers are in other PAs or elsewhere. This may seem obvious, but one

of the main reasons for failure when PAs work with free software is a lack of interaction

between users, developers and IT staff/managers. This is particularly true for migration

efforts (see, e.g. IDA OSO case study on the German Monopolies Commission9), and

9 http://europa.eu.int/ida/en/document/3277/470

GPOSS adv-1 21 October, 2004 16

similar problems due to poor user interaction will arise in the development or take-up of

new free software applications. Feedback for free software development is considerably

more important than for proprietary software for at least two reasons: free software

developers are often more willing and able to act quickly on user feedback; and free

software developers often work on a “user-pull” rather than “user-push” model,

responding to user requests rather than forcing features upon them. In short, free software

developers need feedback, and they usually act upon it quickly.

g) Identify community leaders

It is helpful to identify potential community leaders. While free software

communities are self-organising, leaders are essentially self-selected in that those who

show the most initiative become de facto leaders. It is useful to try to recognise such

individuals and interact extensively with them.

As described in the appendix (“Organisation of free software communities”)

leadership roles in free software projects are determined by the project’s organisational

structure and these vary enormously. Leadership may be claimed by someone who writes

the most software; someone who coordinates and makes decisions; someone who

publicises the work of the community or encourages new developers. The importance of

such roles depends on the nature of the project. For PA projects, the importance of

leadership roles will depend at least on the degree of control the PA wishes to have and

the degree of material support the PA provides. When material support is weak,

leadership may tend towards individual contributors who write more software – i.e. are

most productive. For such contributors, reputation can be an incentive, and recognition

from PAs can help with this. Such engagement and recognition may also help PAs retain

some influence over the project’s direction.

When material support is relatively strong, the PA may be responsible for

financing much of the software development either through internal staff, subcontracting

or through other financing models such as “bounties” (see chapter 2, “How free software

projects relate to external funding”). In such situations the leadership sought from

community participants may be more in terms of developers who promote the project

GPOSS adv-1 21 October, 2004 17

within the community and lead to increasing community support. Of course, high

visibility should be given to the developers who are actually receiving PA funding and

thus represent the PA’s control over the project’s direction.

h) Identify selection mechanism to balance competition with cooperation

between developers

The structure of free software development, while portrayed as cooperative and

communal, is in fact a form of Darwinian competition at levels unheard of in proprietary

software development (which has a top-down approach). In the free software model

anyone is free to contribute; problems may receive multiple solutions, and the best

technical solution is usually adopted. This competition is usually self-organising based on

the expression of user needs as well as technical review by developer peers. But in case

of specialised users such as PAs, it may be helpful for PAs to clearly express preferences

for technical choices as and when they occur, and ensure the continuous monitoring of

the technical choices made in order to have their preferences heard. While this reinforces

the “user pull” described in point (f), it may help for PAs to express technical preferences

also as a co-developer, through the individual voices of the leaders cultivated by the PA

as described in point (g). Individuals are better placed in the dialogue of free software

developers to clearly present a technical viewpoint, and numerous commercial

organisations (such as IBM in Linux or Apache, Novell and Ximian with GNOME) have

successfully “steered” community contributions to free software projects by getting their

views heard through individual leaders in the community, often, but not necessarily,

employed by them.

i) Identify funding methods if required

It is important not to ignore the possibility that funding methods may be required.

These are likely to be inversely proportional to the general interest of each software

application; if a problem is specific to a small and specialised user group, solving it may

require more financial incentives to attract a wider developer community. As discussed in

Chapter 1, free software developers are not motivated by a general interest in acting for

the benefit of humanity, let alone the benefit of PAs. They are not volunteers providing

GPOSS adv-1 21 October, 2004 18

charity. They are, by and large, strongly motivated through self-interest, and it is

important for PAs launching a free software project to develop a clear idea of why

participation in that project would interest developers. An understanding of developer

motivations as summarised in this report will help. As a general rule, the more PA-

specific an application is, the less attraction it will have for developers. A PA-specific

application will also appeal to a smaller pool of developers – most likely, those

professionally involved in PA-related work, including PA employees.

When there is less inherent attraction for developers in a given project, financial

incentives are important. A project like GNU/LinEx in Extremadura can get away with

distributing t-shirts to developers because of its high societal profile (and generic, rather

than PA-specific technical aspect). Even in that case, the “seed” development was

through pure financial incentives, in the form of a contract to a local software firm. In

less appealing, lower-profile projects, direct financial incentives may be required.

Innovative methods such as the “bounty” system discussed previously can be used, or

direct methods such hiring developers as employees or issuing sub-contracts.

More generally, it is helpful to encourage SMEs and individuals to develop viable

businesses for providing integration and support for the PA-specific applications they

develop. This leads to an ecology that provides motives of (financial) self-interest for

developers to voluntarily contribute to the development of PA-related software in the

expectation of revenues from services provided to maintain or support such software.

These incentives were partially responsible for the creation of Governmentforge.org and

Schoolforge.org, by organisations providing services and support to governments and

schools. Such encouragement to SMEs or contractors need not be at a large scale. For

instance, when a unit of a particular PA designs a small, PA-specific software application

with the support of a particular subcontractor, the PA could actively promote the use of

the resulting software in its departments and in other PAs. This helps build a market for

the contractors to provide support, reducing the need for direct financial incentives for

further maintenance and development on the project.

GPOSS adv-1 21 October, 2004 19

j) Monitor and evaluate results

Clearly it is important to continuously monitor the extent of interaction between

“client” PAs and the “supplier” communities (although the suppliers are likely to include

PAs or at least individuals from within PAs). When interest dies, projects can die and fail

to have a sustainable maintenance model. It is important therefore to promote continuous

interaction between users and developers in order to ensure sustainable projects. This

interaction can be evaluated through a number of indicators, including the degree of

community participation (number of developers, frequency of contribution, amount of

on-line discussion, number of downloads etc); and the degree of responsiveness to PA

interests (time lag between bug reports and bug fixes; number of technical suggestions

from the PA that are actually adopted and implemented by the community). When these

indicator show flagging community support, PAs may need to increase feedback (f),

improve their identification and recognition of leaders (g) and quite possibly increase

financial support (i).

k) Involve other public administrations

Finally, as was recommended in the IDA POSS study10, PAs should work in

groups, as single PAs are much less likely to succeed in generating a community of

supporting developers. This is because, as described previously, a community of

supporting developers is attracted by an existing community. Getting like-minded PAs

together before approaching a wider community therefore is more likely to succeed than

a lone PA trying to form a community around itself. There are of course exceptions that

prove this rule, such as Extremadura, but that required extensive high-profile support at

the highest level of government to succeed – with the expressed intention of changing the

society in an entire region. PAs with less ambitious goals, such as developing an efficient

system for managing personnel records, may need to find other like-minded PAs to form

coalitions before taking initiatives to engage with the developer community.

10 www.europa.eu.int/ida/oso - Resources

GPOSS adv-1 21 October, 2004 20

http://www.europa.eu.int/ida/oso

The following chapter outlines the legal issues involved in the collaborations PAs

must build, between PAs and developers and between all the authors involved, i.e. the

licensing environment.

5) Legal relationships

a) Identify the relationships

To allow public administrations partnering with free software developers, there

are basically two kind of relationships: 1) between the administration and the developers,

including the general relations between the authors of the project, and 2) between the

authors (copyright owners or licensors) and the users (licensees) including the fact that

users do not necessarily belong to PA and may want to use, reuse and sometimes

redistribute the software according to their own vision or business objectives.

The previous sections have identified the relations that were “possible” (in a sense

of “able to produce an expected result”) and the relation that were not (in a sense of

“probably based on un-realistic forecastings and incapable of producing any concrete

result).

We have now to summarise how the above relations may be translated in

contracts and in choosing the appropriate license.

The first question is to identify the “type of software solution” (generic or specific

to the needs of the PA), the “type of service” desired by the administration (new

development from scratch, improvement of an existing software, integration and

operational support of existing components), and the “type of partner” (the possible open

source communities or other partners able to deliver the service needed to obtain the

solution).

1) Type of software solution

GPOSS adv-1 21 October, 2004 21

A1 Very generic purpose (e.g. operating system, desktop environment, Office suite)

A2 Specialised purpose (e.g. a content management, a collaborative work

environment, a workflow system that could be used by various PA but also for

other business)

A3 Specific PA purpose (e.g. land record management, public health)

2) Type of service

B1 Development from scratch

B2 Improvement of a solution developed externally (e.g. with the purpose to reuse it,

to adapt it to local needs, to reach a specific security certification or to integrate

components into a specific distribution)

B3 Improvement, take over or support of a solution developed internally by the

administration

3) Type of partner

C1 “open source” or “free software” community without formal organisation or legal

personality

C2 Organised community (e.g. non profit organisation of users or developers with

legal personality)

C3 Commercial partner (a company or a consortium, specialised in development or

integration of software solutions)

GPOSS adv-1 21 October, 2004 22

b) Possible cases, and corresponding contractual relations

In practice, all type of solutions, services and partners will not produce (3x3x3)

27 different relationships. To simplify, we believe that mainly the five case illustrated

below (case 1 to 5) may be encountered.

A1 B1 C1/2/3 Not usual, outside exceptional circumstances as

a voluntarism long term development

N/A

A2

or

A3

B1 C3 To develop from scratch it is recommended to

define detailed specifications, and to contract

with a solid responsible third party (with

development capabilities). Choice of standards,

“open source conditions” and license to

include/add into the development contract

Case 1

A2 B2 C1 or

C2

In this case the solution has already been

developed externally and has a “community” of

developers and of users.

There is already a licensing policy.

This case has theoretically the most chances of

success.

Case 2

A3 B2 C1 or

C2

This is the “Pooling” hypothesis: a specific

software has been developed by another

administration and your PA wants to reuse it (or

at the opposite other PA’s request to

reuse/adapt your solution)

Case 3

A3 B3 C1 or

C2

The problem here is to organise a community

that is willing to endorse the specific needs of

the PA. This will be possible provided the PA

Case 4

GPOSS adv-1 21 October, 2004 23

stays strongly involved (providing both

community members and incentives or

bounties)

A3 B3 C3 If the PA wants to “preserve the heritage” and

ensure (e.g. for political reasons) that

investments done by itself in the past will stay

as an “asset” for the FLOSS community, but at

the same time has no human resource to stay

involved in development.

Case 5

i) Case 1 (solution developed from scratch for the PA)

The PA should commission a service company to develop the solution (or part of

it). The principle decision to distribute the solution as open source software must be taken

from scratch (if this distribution is “possible” – even if it is finally not done), and the

selection of the distribution license too, because this conditions the possible components

and standards (non-proprietary, with a compatible license) that the service company may

use to realise the solution. If the code is entirely written from scratch, the PA is entirely

free about the choice of a licence. At the contrary, if the developers are allowed to reuse

and integrate existing pieces of free software (no reinventing the wheel) the license of

these components will determine (in the case of copyleft11 effect) the condition of re-

distribution of the developed software.

The RFP (request for proposal) will therefore:

11 In the aim of avoiding later appropriation „copyleft“ clauses are license dispositions that generally
mandate the use of the initial software or component license if and when redistributing any new software
integrating all or part of these initial software or component.

GPOSS adv-1 21 October, 2004 24

- Indicate the license chosen by the administration in case the administration wants

to distribute the solution (see hereafter)

- Check and clarify all copyrights questions:

o The moral rights (to the “brand name” of the solution, to disclosure of

rights and to the respect and integrity of the work that has been done)

o The propriety rights:

 who can “represent the solution” on web sites, events and other

communications

 who can reproduce (as is), modify, redistribute,

 what about redistribution fees (as in general no open source license

forbid to sell the redistribution…).

The recommended best practice (clause to include in the RFP) is that:

1) The PA has the exclusive right of disclosure and the proprietary rights

of representation and reproduction of the software.

2) The service provider keeps the right to be identified as the author.

However, he can only reuse the results, commercially or free of

charge, with the entity’s express permission, so he cannot

automatically redistribute freely: the PA keeps the decision to

redistribute or not.

- Determine the development and interoperability standards (highly recommended).

If a precise indication of all standards cannot be done, precise that any standards

must be:

o Non proprietary or at least licensed for free, for any use or redistribution

GPOSS adv-1 21 October, 2004 25

o Endorsed by a neutral, acknowledged international (or European)

normalisation association or specialised administration.

- Impose to the service partner to use only software components and standards that

are fully compatible with the above (e.g. your service partner cannot integer

GNU/GPL components if the PA has decided to distribute under a BSD license).

The service partner must issue a certificate to confirm this conformity.

ii) Case 2 (Specific open source software, found externally)

In this case the PA is looking for using and adapting an existing FLOSS project,

that has already a community of developers (and if delivered, of users), responding to a

specific purpose (e.g. a content management, a collaborative work environment, a

workflow system that could be used by various PA but also for other business)

- Identify the community and its leaders

- Identify the licenses and check that it is conform to the PA needs (negotiate

appropriate license if possible).

- Deploy contractual or extra-contractual incentives:

o Contracting a service level agreement ensuring support (this is only

possible if the author is an organised body or a company)

o “Ex Ante” funds to orient developments in the desired direction (this is

also only possible if the counterpart is an organised body or a company)

o Deploying incentives (especially if the supporting community is not an

organised legal body):

GPOSS adv-1 21 October, 2004 26

 Provide Job opportunities (temporary or definitive engagement of

one or more community experts)

 Create an “Ex post” bounty or award system in case of

improvement and/or support to the PA objectives (e.g. let the Open

source community create a committee or scientific council that will

assess the value of contributions in regard to the PA objectives and

will recommends the “ex post” awards)

 In this case the solution has already been developed externally and

has a “community” of developers and of users.

iii) Case 3 (solution developed by a PA, with possible pooling or reuse)

As said within the POSS study published on the IDA site, the decision of

distributing solutions under open source license by the PA creating it must be made on a

case-by-case basis according to the benefits of the software for a group of users. Going

open source in a multi-lingual environment may represent an important extra investment

(e.g. multiply by 3 the initial cost) and if the software does not clearly meet the needs of

other PA’s, it is preferable not to bear the extra burden of distribution.

The process will be, first:

- Choosing the license in case the administration wants to distribute the solution

(see hereafter). This has to be done from scratch as it has an impact on the

components that developers may reuse or not.

GPOSS adv-1 21 October, 2004 27

- Assemble full information and certify license compliance for all use of FLOSS

components during the project. If these components are used, document carefully

their license, as the actions to comply with it.

- At the end of the project, consolidate the compliance report and indicate the name

of the server on which the software is distributed as free software, the date when it

will be made available.

- Notify the software existence and copyright to a competent copyright organisation

and to the FLOSS organisation as the Open source or the Free Software

Foundation, (especially when the PA wants to benefit from support coordinated

by that organisation).

iv) Case 4 (Specific solution, developed internally by the PA, so far)

The PA has already developed a solution with a specific public sector purpose

(e.g. land record management, public health) and wants the solution to be take over by an

Open source community, ensuring pereniality, improvements and support.

Prior to the decision of going open source, the PA should take contact with

national / European free developers organisations and explore if there is some guarantee

that an existing community will be interested and endorse the project. If this is not clear,

the recommended solution is to act as in case 5.

After choosing a license (in consideration with the components integrated into the

solution - see hereafter, and the philosophy of the above community), the PA should

actively participate in the reinforcement of the community, possibly in collaboration with

other PA sharing the same needs.

A rapid “de-investment” is not possible here.

Once the community is created or identified, a similar (stronger) incentive policy

as explained in case 2, should be implemented.

GPOSS adv-1 21 October, 2004 28

v) Case 5 (same as 4, with a service partner)

The alternative to case 4 is, in addition to appropriate open source licensing, to

contract long term (2 years and more) a service level agreement with a service provider at

the same condition as for case 1. A part of the service provider mission will be to animate

a contributor’s community and set up the appropriate tools for it (therefore, chose a

partner having experience in such co-operation). The cost will be higher than for case 4,

but obtaining a result will be more simple and secure – at least concerning support,

although without guarantee to generate long term a successful open source product

supported by a community of volunteers.

c) Choosing the licence

If it is decided to distribute free/open source software, the licence must be chosen

from the start of the project, when the specifications are drawn up, as the choice of

components that can be reused during production will depend on the choice of licence.

As known there are (on the Open source Initiative web site) more than 30 licenses

that are compatible OSI conditions. As said in the POSS study, these nine conditions

were established by the Open source initiative (OSI – Bruce Perens12) to accept a license

as “Open source”. These nine conditions are the base of the OSD (Open source

Definition):

1. Free Redistribution

12 Bruce Perens wrote the first draft of this document as "The Debian Free Software Guidelines", and it is
now a cornerstone of the OSI policy- see at http://www.opensource.org/docs/definition.html

GPOSS adv-1 21 October, 2004 29

http://www.opensource.org/docs/definition.html

The license shall not restrict any party from selling or giving away the software as a
component of an aggregate software distribution containing programmes from several
different sources. The license shall not require a royalty or other fee for such sale.
Rationale: By constraining the license to require free redistribution, it eliminates the
temptation to throw away many long-term gains in order to make a few short-term sales
dollars. Without that, there would be lots of pressure for co-operators to defect.

2. Source Code
The programme must include source code, and must allow distribution in source code as
well as compiled form. Where some form of a product is not distributed with source
code, there must be a well-publicized means of obtaining the source code for no more
than a reasonable reproduction cost–preferably, downloading via the Internet without
charge. The source code must be the preferred form in which a programmer would
modify the programme. Deliberately obfuscated source code is not allowed. Intermediate
forms such as the output of a pre-processor or translator are not allowed.
Rationale: OSI requires access to un-obfuscated source code because you can't evolve
programmes without modifying them. Since OSI purpose is to make evolution easy, it
requires that modification be made easy.

3. Derived Works
The license must allow modifications and derived works, and must allow them to be
distributed under the same terms as the license of the original software.
Rationale: The mere ability to read source isn't enough to support independent peer
review and rapid evolutionary selection. For rapid evolution to happen, people need to
be able to experiment with and redistribute modifications.

4. Integrity of The Author's Source Code
The license may restrict source-code from being distributed in modified form only if the
license allows the distribution of "patch files" with the source code for the purpose of
modifying the programme at build time. The license must explicitly permit distribution of
software built from modified source code. The license may require derived works to carry
a different name or version number from the original software.
Rationale: Encouraging lots of improvement is a good thing, but users have a right to
know who is responsible for the software they are using. Authors and maintainers have
reciprocal right to know what they're being asked to support and protect their
reputations.
Accordingly, an open-source license must guarantee that source be readily available, but
may require that it be distributed as pristine base sources plus patches. In this way,
"unofficial" changes can be made available but readily distinguished from the base
source.

5. No Discrimination Against Persons or Groups
The license must not discriminate against any person or group of persons.
Rationale: In order to get the maximum benefit from the process, the maximum diversity
of persons and groups should be equally eligible to contribute to open sources. Therefore
OSI forbids any open-source license from locking anybody out of the process.
Some countries, including the United States, have export restrictions for certain types of
software. An OSI-conformant license may warn licensees of applicable restrictions and
remind them that they are obliged to obey the law; however, it may not incorporate such
restrictions itself.

GPOSS adv-1 21 October, 2004 30

6. No Discrimination Against Fields of Endeavour
The license must not restrict anyone from making use of the programme in a specific
field of endeavour. For example, it may not restrict the programme from being used in a
business, or from being used for genetic research.
Rationale: The major intention of this clause is to prohibit license traps that prevent open
source from being used commercially. OSI want commercial users to join OSS
community, not feel excluded from it.

7. Distribution of License
The rights attached to the programme must apply to all to whom the programme is
redistributed without the need for execution of an additional license by those parties.
Rationale: This clause is intended to forbid closing up software by indirect means such as
requiring a non-disclosure agreement.

8. License Must Not Be Specific to a Product
The rights attached to the programme must not depend on the programme's being part of
a particular software distribution. If the programme is extracted from that distribution and
used or distributed within the terms of the programme's license, all parties to whom the
programme is redistributed should have the same rights as those that are granted in
conjunction with the original software distribution.
Rationale: This clause forecloses another class of possible problem, avoiding that the
license forbids or restricts rights to use other programmes or at the contrary impose to
use other programmes (e.g. included in the same distribution).

9. License Must Not Contaminate Other Software
The license must not place restrictions on other software that is distributed along with the
licensed software. For example, the license must not insist that all other programmes
distributed on the same medium must be open-source software.
Rationale: Distributors of open-source software have the right to make their own choices
about their own software.
According OSI, the GPL license is conformant with this requirement, as GPLed libraries
"contaminate" only software to which they will actively be closely linked at runtime, not
software with which they are merely distributed.

d) Recommendations concerning the license

A first option is to try to make an original licence that answers specifically to the

PA needs. In general, we do not recommend this option for several reasons: First, there is

a risk that the PA’s legal service, unaware of the specificity of open source matters, will

over-protect or introduce conditions that will make the license simply not a “free or open

GPOSS adv-1 21 October, 2004 31

source” one: for example, a license that reserves the use of the distributed software to

other public administrations or exclude commercial use is not a FLOSS license.

Second, open source communities are usually “attached” to their licensing model.

There is a risk that nobody will support your project if you make your own “exotic”

license for the above reason and because reusing existing components (e.g. licensed

under GPL license) may not be compatible anymore.

Therefore, a new license should be introduced only if it presents substantial

advantages above all existing ones (e.g. a variant with better conformity to European

laws) and if there is a strong and clear policy to generalise the use of this license to many

software (and not to use it only in the specific case).

Where no such ambition exists to create and promote long term a new general

license, the best option is therefore to join a “dominant license” supported by a large

proportion of the open source community.

Two main options may be reasonable:

- If the PA wants to “give” its software for all type of re-use, including the

incorporation in proprietary commercial solution (with the purpose of facilitating

software business or software industry), a BSD type license should be chosen.

This will not impeach the open source community to distribute the original code

freely, and to fork its own improved versions under a GPL license (for example).

However, improvements and new versions created by the proprietary industry

may definitively escape to the open source world.

In addition, this choice of a licence where “appropriation is tolerated” exclude the

use of GPL components (about 50% of available components) and would mean

retaining only components under licences in the same family – tolerating

appropriation (BSD, MIT, Apache, Python, Zope, etc).

GPOSS adv-1 21 October, 2004 32

- If the PA wants to reserve its software for open source use (this does not restraint

any form of commercialisation, but it restraint exclusive appropriation), then the

GPL or a copyleft license fully compatible with the GPL is recommended (French

open sources communities have recently promoted the CeCILL license, said to be

more compatible with European law than the American GPL).

The decision to produce a software development under a GPL license allows

integration of components of GPL origin or nearly any other origin. It does not

imply any obligation to distribute the software produced if it is produced entirely

by the entity (to keep developments secrets, simply do not license this version).

The use of the GPL may be less appreciated or questioned by some

representatives of the industry, however it may ensure the largest volunteers

support inside the open source community.

GPOSS adv-1 21 October, 2004 33

Appendix 1: Organisation, motivation and external interaction

e) How free software developer communities work

Based on an online survey of 2784 Free software/Free Software developers, the

EC/FP5-supported FLOSS report provided insights into fundamental features of the

OS/FS community and its economic principles. It shed light on the personal features of

OS/FS developers, of their work and project organization, their motivations, expectations,

and orientations.

The FLOSS community is a rather young and a predominantly male community

with a strong professional background in the IT sector and a high educational level.

Developers feature a high degree of mobility, and the European Union appears attractive

mainly for developers from within its member states, but does not see a net inflow from

developers from the United States of America or other world regions.

Overall, developing free software, with its strong voluntary incentive structure,

resembles the structure of a hobby more closely than of salaried employment. Other than

(software) engineers and programmers, students also play a significant role in the

community, although project leadership and greater productivity tends to be the domain

of experienced developers who earn income from their free software related work. Most

of the developers participate in collaborative networks of a few people – informal teams

of 3-5 are common. Nevertheless, a considerable large group of highly productive

developers have regular contacts with more than 50 other developers and form what is

undoubtedly the “professional elite” within the community.

These diverse independent developers come together to solve problems based on

common interests; typically, they will work on modifying the software released by

someone else, in order to adapt it to their own needs or fix problems with it; such

adaptations are released into the community and absorbed into the next version of the

software. Version changes occur rapidly and free software systems tend to grow and

improve at a fairly rapid pace.

GPOSS adv-1 21 October, 2004 34

f) Organisation of free software developer communities

The development of software and the cooperation in free software developer

communities differs considerably from developing proprietary software in firms. The free

software model can be described as free cooperation of autonomous developers

connected through a highly volatile network organization (David & Foray, 2002; von

Hippel, 2002; Lakhani & von Hippel, 2003; von Krogh et al., 2003). Pinpointing the

differences, proprietary software is usually considered to be aligned with a hierarchical

organization of work, a sequencing of tasks, and a complex software architecture,

whereas free software appears to be produced in horizontal networks in which various

developers work at the same time at the same or similar tasks and with a modular

software architecture. A significant advantage of the free software model to the

proprietary software model its clearly its capacity in debugging, which results in unique

software quality regarding stability and reliability. The vast pool of skilled people, flat

hierarchies, synchronicity, and modularity of the free software model are considered as a

significant means to counter the phenomena of the so-called software-crisis, i.e. that

proprietary software often takes too long to develop, exceeds its budget, and does not

working very well. (Feller & Fitzgerald, 2002) However, besides these fundamental

differences free software development requires similar structures as proprietary software

development, i.e. the members must have the capacity to write code, coordinate work,

and to maintain and administer the advances of a project.13 When a free software project

reaches a critical size, individual people take response for different project tasks and

coordinating institutions (steering committees) emerge. (Bauer & Pizka, 2003) The

variety of such coordination mechanisms ranges from “benevolent dictators” (e.g. Linus

Torvalds as leader of the Linux kernel development) over “rotating dictatorship” (e.g. the

Perl scripting language) to democratically elected committees (e.g. FreeBSD, Apache,

Debian (Raymond, 1998). How these institutions develop differs thus considerably

between diverse projects and is yet not examined systematically, but technical merits and

reputation (Garzarelli & Galoppini, 2003) and face-to-face contacts (O’Mahony &

13 Additional capacities that must be provided are for instance an infrastructure to collect contributions and
represent the status of a project, translating capacities, and legal expertise.

GPOSS adv-1 21 October, 2004 35

Ferraro, 2003) seem to play a significant role. In any case, public administrations that

want to partner with free software developers can rely on the fact that the more a free

software project is institutionalized, the more likely it is that they find persistent support

and maintenance capacities in the free software community.

Regarding the structure of free software community members, a strong

background in IT-related professions is its main characteristic. Software engineers and

programmers provide roughly half of the community members; consultants and

executives provide another 14 per cent (Students: 21 per cent, university staff: 9 per cent,

others: 7 per cent). (Ghosh et al., 2004) Apparently, consultants and executives play a

prominent role for the project activities in the free software community, as this group

shows a strong activity with regard to project participation and leadership and regular

contacts to other developers. Compared to this group, software engineers and

programmers show lower activity degrees (Glott, 2004). In conclusion, free software

developer communities do not only provide technical but also managerial expertise to

organizations that have an interest in partnering with these communities.

g) Motives of free software developers

There is a large variety of assumptions as to why people join the FLOSS

community and “work for free”. Lakhani and Hippel (2000) distinguish three kinds of

motivators: the personal need for using a specific free software application (see also

Searls, 1998), the wish for reputation among developers (see also Raymond 1998a,

1998b; Kohn, 1987), and intrinsic joy in programming.14

Other authors point out that direct or indirect rewards are as essential for the

functioning free software as for any other organisation that develops and distributes

software. Ghosh (1998a) explains that developers always get more out than they possibly

can put in, but only if people keep contributing all together. Implicitly he thereby

14 Shah (2003) emphasises a specific need for software as the main reason for peoples’ initial involvement,
while on the long run fun becomes a more important motivation for people to continue.

GPOSS adv-1 21 October, 2004 36

assumes reciprocity on a large scale (see also Ousterhout 1999). Lerner & Tirole (2002;

see also Lee, Moisa & Weiss, 2003) argue that the whole free software phenomenon can

be explained by “simple economics”, whereby they refer mainly to monetary and career

concerns. Indeed, as the FLOSS survey turned out, more than half of the sample (54 per

cent) earns either directly or indirectly money from free software. Both kinds of rewards

seem to have the same importance for the community. Within the scope of directly

earned money from free software, administrating software plays a more important role

than developing software. Within indirect earnings, to get a job because of expertise in

free software is observably the most important factor.

However, empirical research turned out that motivations for participation in free

software projects are more complex. Hars and Ou (2001) observe a mixture of internal

motivators, such as self-determination, altruism, and community identification, and

external motivators, such as selling products, human capital improvements, self-

marketing, and peer recognition. Further empirical analyses of free software developers’

motives revealed that signalling functions play only a very unimportant role compared to

other motivators.15 Bonnaccorsi & Rossi (2003), who have compared several of such

empirical studies, could show that in all these studies social motivations played a much

more important role for free software developers than signalling effects or peer

recognition (see also Ghosh 2003: 12-15).

In the FLOSS developer survey (Ghosh et al., 2002), almost eight out of ten

software developers started with free software because they wanted to learn and develop

new skills, and half of the sample claimed that they wanted to share their knowledge and

skills with other software developers. The second important group of motives ranges

from socialising (participation and collaboration) over software-related (wish to improve

software products) to political (attitude against proprietary software) aspects of the

community. It is noteworthy that all these reasons gained importance after the developer

15 These studies are: Ghosh, Glott, Krieger & Robles (2002); Lakhani, K. R.; Wolf, B.; Bates, J. & DiBona,
C. (2002); Hars and Ou (2002); Hertel, Niedner & Herrmann (2003).

GPOSS adv-1 21 October, 2004 37

had joined the community and attained some experience. Material motives (“improve my

job opportunities”, monetary concerns) were less important, although the share of those

who wished to make money increased with growing experience in the community (from

4% as a motive to join the community to 12% as a motive to stay in the community).

Conclusively, the initial motivation for participation in free software aims at individual

skills and the exchange of information and knowledge with other developers, but over

time material and political aspects grow.

Based on a factor and a cluster analysis of these data, Ghosh et al. (2004) could

identify six diverging groups of developers from the initial motivations (that are reasons

to join free software) and four diverging groups from the continuing motivations (that are

reasons to continue free software)16. Apparently, most people who join the community

have no clear concept of what they expect from this step and what its outcome will be, as

almost half of the respondents of the FLOSS developer survey showed very diffuse

motivations. “Ideologists” provided the second largest initial motivational group (17 per

cent), which highlights the importance of the political dimension of the FLOSS

community for attracting new members. Material motivations, reputation, and software-

centred motivations (the wish to improve software products) showed similar shares

between 10 and 12 per cent, whereas “enthusiasts”, who showed a strong interest in

almost all aspects of free software, provided clearly the smallest initial motivational

group (4%).

Regarding the continuing motivational groups, Ghosh et al. (2004) observed a

dissolution of the initial “enthusiasts”, “materialists”, and “diffused” to the benefit of a

new group that is strongly driven by the wish for skills improvement, while “ideologists”,

“recognition seekers” and “software improvers” remained. “Skills improvers” (33 per

16 N.B.: The term “initial motivational team” does not mean that members of this group belong to starters in
the community. The term only describes a group within the FLOSS community that reported a certain
set of motivations to join the FLOSS community that could be distinguished from other groups with
different initial motivations. The same applies to the term “continuing motivational groups”, which is
not meant as a label for people who belong to the FLOSS community for a longer period. The initial
motivation gives thus answer to the question “why did you join the FLOSS community?” (disregarded
whether this was five weeks or five years ago), whereas the continuing motivation answers the
questions “why are you still in the FLOSS community?” (disregarded whether one belongs to the
community for five weeks or for five years).

GPOSS adv-1 21 October, 2004 38

cent) and ideologists (31 per cent) provided the two largest continuing motivational

groups, whereas “software improvers” provided a quarter of the sample. “Recognition

seekers” clearly provided a minority (12 per cent).

What do these diverse motivations present within the pool of potential

contributors to a free software project mean, with regard to guidelines for public

administrations’ involvement? For an IT department in a public administration, it would

be best to somehow attract developers from whom software improvement and recognition

play the most important role. In fact, skills improvement and ideology are the most

important driving forces of free software developers, but this is not a disadvantage. In

contrast, these aspects provide the foundation on which expertise in free software can be

generated. In conclusion, public administrations that want to partner with free software

should pay attention to the developers’ interest in challenging tasks and to their values

and beliefs with regard to sharing knowledge, information, and software code / products.

Given that, it is most likely that developers will be attracted towards software projects of

immediate benefit to them – which is not necessarily the case for many dedicated public

administration applications (e.g. for land records) but may well be the case for more

general platforms used by public administrations (e.g. Zope or KDE). Developers may

also be attracted to projects that provide the opportunity to enhance their reputation

among the peers or the general public – including potential employers. Schemes to

provide highly visible credit to contributors to public administration projects may

therefore attract developers, providing that they are also technically challenging.

h) How free software projects interact with external feedback

Interacting with funding is a subset of a broader model whereby free software

projects tend to be open communities, continuously responding to external feedback.

Indeed, these communities do not relate to external feedback as much as absorb external

commentators as part of a continuously growing community. Linus Torvalds, the creator

of the Linux kernel that forms part of the GNU/Linux operating system, said as far back

as in 1996 that “the large user-base has actually been a larger bonus than the developer

base, although both are obviously needed to create the system that Linux is today. I

simply had no idea what features people would want to have, and if I had continued to do

GPOSS adv-1 21 October, 2004 39

Linux on my own it would have been a much less interesting and complete system”

(Ghosh 1998b).

There is widespread recognition in the free software community that users play a

crucial feedback role. This is tempered, though, with the assumption that those who want

a solution badly enough are free to (and therefore should) create it, or modify existing

software to achieve it themselves. The degree of responsiveness to user suggestions is

therefore likely to be directly proportional to the extent of the perceived user need – if a

solution is likely to significantly improve the experience of all users (e.g. a bug that

makes an operating system crash) it is likely to get fixed much more quickly by the

community than something that satisfies a relatively small user base (such as a water

management system). This is for the simple reason that communities work as collections

of individuals, and there is a high chance of one (or more) individual participants taking

the initiative to solve a given problem if it seems to be an important problem. Issues that

affect specialised users only are likely to be solved based on more initiative by those

users themselves.

For public administrations wanting to collaborate with free software communities,

therefore, this means that active participation in getting major projects to work more in

line with needs of PAs can work, when PAs are a big user base and the solutions are not

extremely specialised. This is, for instance, quite common in free software projects like

MMBase (especially in the Netherlands where a number of PAs use it and a number of

Dutch businesses have been built around it) or Zope. For more specialised needs,

however, the strategy must be more along the lines of attracting a community of

interested parties around the PA’s specific needs.

i) Paying for free software

Firms’ interest in free software is not only reflected in their demand for free

software products, but also in their direct support through either hiring people with free

software experience or by providing personal expertise, as indicated by the role of

consultants and executives in the free software developer community. As shown in the

above section, 54% of the community members receive direct or indirect monetary

GPOSS adv-1 21 October, 2004 40

rewards from free software. However, since the FLOSS developer survey did not ask the

respondents to quantify how much they earn from free software and since other studies in

the meantime did not ask this question either, it is not possible to provide a well-reasoned

estimate of the monetary value of free software in terms of salaries or other remuneration

that are paid for free software by external organisations.

Still, the costs for some free software products and related services can be

quantified. Although it is often said that free software is distributed for free or at marginal

costs, there are some free software products and services that appear quite expensive. For

instance, a professional licence from MySQL costs 500 Euro, and entry-level technical

support costs another 2000 Euro.17 However, these costs are low compared to costs for

proprietary software licences and service packages and it must be noted that the “dual

licensing” model of MySQL AB requires these fees only for commercial use of the

MySQL database that would violate the terms of the GPL free software licence. Most

non-commercial use, and indeed most commercial use is permitted according to the GPL,

so the same software can be downloaded at no cost, subject to the free software licensing

terms, and without guaranteed technical support. Thus, besides the clear interest in profit,

fees in free software may also serve as a system for keeping the free software model alive

and putting off commercial third-party appropriation of the software.

Nevertheless, savings in software licence fees and support are only a small part of

the factors that may serve as incentives for institutional users of free software, since

participating in free software appears sensible for many reasons. For instance, firms can

make money from offering complementary services to software (Wichmann, 2002a;

Feller & Fitzgerald, 2002), like the Linux distributor Red Hat18. But there are many other

incentives that apply also to public administrations and that result in funding free

software. They can

 cut hardware costs because free software systems do not in general require as

frequent hardware upgrades as proprietary software (Feller & Fitzgerald, 2002)

17 See https://order.mysql.com/
18 http://www.redhat.com/

GPOSS adv-1 21 October, 2004 41

 become independent from powerful proprietary software companies and related

high prices and licence fees for software (Lerner & Tirole, 2002a),

 cut innovation, training, and maintenance costs by tapping the (almost costless)

development and consultancy capacities of the free software community (von

Krogh et al., 2002; Hawkins, 2002)

 can hire experienced and skilled developers from the free software community,

i.e. reduce search costs for good personnel (Wichmann, 2002b; Fink, 2003)

Accordingly, Ghosh & Glott (2003) have found similar incentives for the Dutch

public sector, of which the availability of the source code, the capacity of free software to

be combined with proprietary software, the saving of software- and IT-related costs, and

the fact that free software can easier be customised than proprietary software have been

most important.19

19 However, there were also strong disincentives: Public administrations often doubt whether they would
find technical support for open source software and they fear high training costs.

GPOSS adv-1 21 October, 2004 42

Appendix 2: A closer look at selected development projects

j) FreeBSD

 There exist other free operating systems besides the popular GNU/Linux. A

family of them are the successors of the distributions made at the University of California

at Berkeley: the BSD systems. The oldest and most-known of these systems is FreeBSD,

whose history goes back to the beginnings of 1993 when Bill Jolitz stopped releasing the

non-official patches to 386BSD, the system officially released by Berkeley. With the

assistance of a company called Walnut Creek CDROM, which was later on renamed to

BSDi, a group of volunteers decided to continue with the effort of keeping this operating

system up-to-date.

 The main goal of the FreeBSD project is to create an operating system that can be

used without any obligations or hindrance, but with all the advantages of the availability

of source code and of a high-quality development process. The FreeBSD is released

under the terms of a permissive BSD license which allows the redistribution of itself or of

modified versions even in a proprietary way. This licence is almost the same as public

domain (release free from copyright).

i) History of FreeBSD

 The 1.0 version appeared ending 1993 and was based in 4.3BSD Net/2 and

386BSD. 4.3BSD Net/2 contained code from the seventies when UNIX was developed

by AT&T, resulting in legal problems that were not solved until 1995, when FreeBSD 2.0

was released with no code being originally from AT&T. Rather, this was based on

4.4BSD_lite, a “light” version of University of California's 4.4BSD that had suppressed

many modules to avoid legal problems and that had an incomplete port to Intel systems.

 The history of FreeBSD would not be complete if we did not talk about its

“brother” distributions, NetBSD and OpenBSD. NetBSD appeared with a 0.8 version in

mid-1993. Its main goal has been to be very portable although in the beginnings it was

only a port to the Intel 80386 platform. Its slogan is “of course it runs NetBSD”.

GPOSS adv-1 21 October, 2004 43

OpenBSD is the product of a fork from NetBSD based on philosophical (and personal)

differences between developers in mid-1996. Its main focus is on security and

cryptography - it is said to be the world’s most secure operating system (with the possible

exception of SE Linux developed by the US National Security Agency), although as it is

based on NetBSD it conserves a great portability.

ii) Development in FreeBSD

 The development model used in the FreeBSD project is based strongly in the use

of two tools: the CVS versioning system and the GNAT bug-tracking system. Hierarchies

in the project are based on them, too. This way, committers – those developers who have

write access to the CVS repository – have control over the project acting as “gatekeepers”

at least to the “official” release. It is always possible, this being free software, that

rebellious programmers can create and control their own version, which is called

“forking” a project and is what resulted in NetBSD and OpenBSD.

 There is no need to be a committer to submit bugs to GNATS, so anybody may

submit one. All open contributions in GNATS are evaluated by a committer who may

assign the task to other committers or request more information to the person who did the

original report. If the bug has already been solved in one of the most recent branches of

development, its status is updated. In any case the goal is that the report of each bug is

tracked, and the tracking is “closed” at the end of the process once a bug is fixed.

 FreeBSD delivers its software in two different forms. On the one hand we find

the ports, a system of downloading the source code, compiling and configured to work on

different machines. On the other hand there are packages, which are the same source

codes as the ports but precompiled and hence available for download in binary form. The

most important advantage of ports over packages is that they allow the user to configure

and optimize the software for his own machine while the system based on packages

allows one to install the software faster as it comes in a precompiled form.

GPOSS adv-1 21 October, 2004 44

iii) Decision-taking in FreeBSD

 The board of directors of FreeBSD, popularly known as the “core team” is the

one that points the direction the project should follow and that looks that its goals are

achieved. It is also supposed to mediate in case of conflicts between committers. Until

October 2000 it was a closed group which one only could join by invitation. Since then,

the members of the core team are periodically and democratically elected by the

developers.

iv) Companies around FreeBSD

 There are several companies that offer services and products based on FreeBSD.

The FreeBSD project has a detailed list of them on its web site. In this short study we will

focus on two: BSDi and Walnut Creek CDROM.

 FreeBSD was born partly because some people at CSRG (Computer Systems

Research Group) at the University of Berkeley founded in 1991 a company named BSDi.

This company gave commercial support for their new operating system. In addition to the

commercial version of the functional FreeBSD system, BSDi also developed other

products such as an Internet server and a gateway.

 Walnut Creek CDROM was born with the objective of commercializing

FreeBSD as a finished product, a sort of distribution such as the GNU/Linux ones, but

based instead on FreeBSD. In November 1998, Walnut Creek opened the FreeBSD Mall

web site that offered all type of products related to FreeBSD (from the distribution itself

to T-shirts, magazines, books, etc.) and offered professional support for FreeBSD.

 March 2000, BSDi and Walnut Creek merged under the name BSDi to confront

the Linux phenomenon which was leaving the BSD systems in the shade. A year later,

Wind River bought the part dedicated to software development at BSDi with the intention

of adapting FreeBSD to embedded systems and intelligent devices connected to the Net.

GPOSS adv-1 21 October, 2004 45

v) Statistics of FreeBSD

 The numbers that will be shown next correspond to the analysis of FreeBSD's

CVS records on the 21 of August of 2003. SLOC refers to source lines of code, and

COCOMO is a standard model in software engineering used to estimate the cost of

development of a software product. Given the product’s expected size in SLOC,

COCOMO enables firms to estimate the number of person-years (effort) and the actual

number of years (duration) that the project would require to complete. This can be used to

estimate costs of development based on average developer salaries. The figures based on

COCOMO in the following tables show for each free software project the investment that

could have been required if the software had been developed within a proprietary

software company.

Table 1. FreeBSD
Web site http://www.FreeBSD.org
Project start 1993
Licence BSD-type
Current version of FreeBSD 4.8 (stable), 5.1 (development)
Lines of code (SLOC) 7,750,000
Number of files 250,000
Cost estimation (COCOMO) $ 325,000,000
Development time estimation (COCOMO) 10.5 years (126 months)
Estimation of the mean number of developers
(COCOMO team size)

235

Approx. actual number of developers 400 commiters (1000 developers)
Active commiters in the last year 75 (less that 20% of the total amount)
Number of commits in CVS 2,000,000
Mean number of commits per day approx. 500
Main tools CVS, GNATS, mailing lists, news sites (web)

k) KDE

 Although certainly not the first solution regarding user-friendly desktop

environments, the spread in 1995 of the Windows95 operating system led to a radical

change in the interaction between computers for common users. The followers of UNIX

perceived the success of Windows95 as something lacking in the UNIX world (which

was originally the home of one of the earliest graphical user interfaces, the X Window

System) and launched several efforts in order to have a desktop environment for the free

GPOSS adv-1 21 October, 2004 46

software world. In 1996 KDE – K Desktop Environment, where K once stood for “Kool”

– was born.

 A big public debate arose when the newly created KDE project decided to use an

object-oriented library called Qt, developed by Norway-based firm Trolltech(TM), and

which was not released under any free software license. Hence, we had a situation where

although the applications developed by the KDE group were free software (they chose

the GPL license), they linked to this Qt library making the environment as a whole

impossible to be redistributed, as one of the “four freedoms” of the free software

definition (freedom to redistribute) was violated. From the KDE version 2.0 Trolltech

released Qt under a dual license that specifies that if the application that links to it is

GPL, Qt is licensed under the GPL. The licensing problem was solved successfully.

i) KDE development

 KDE is one of the few free software projects that follows a strict shipping

calendar. Versioning follows a defined policy: the first number gives the major version,

the second is the minor version and the third (if it is given) gives the number of updated

versions. Within versions with the same minor version number there exists binary

compatibility, so it is possible to run an application in KDE 3.4 that was programmed for

KDE 3.2. Generally changes in the major version have been done in parallel to new

versions of the Qt library, allowing developers to make use of the enhancements in it.

 KDE constituted itself later on in a registered association in Germany (called

KDE e.V.) and as such it has some statutes in which a board of directors is specified. The

influence of this board over the development is zero, as its tasks are related mainly to the

administration of the association, especially regarding donations that the project receives.

For the promotion and diffusion of KDE the KDE League was founded. It is formed by a

group of enterprises and individuals. The companies that participate in the KDE League

are mainly GNU/Linux distributors (SuSE, Mandrake, TurboLinux, Lindows and

Hancom - a Korean-based free software distribution), development firms (Trolltech and

Klarälvdalens Datakonsult AB), a giant company (IBM) and finally KDE.com which

provides merchandising and other minor services related to KDE over the Internet.

GPOSS adv-1 21 October, 2004 47

ii) Statistics of KDE

Table 2. Statistics of KDE
Web Site http://www.kde.org
Project start 1996
Licenses (for applications) GPL, QPL, MIT, Artistic
Licenses (for libraries) LGPL, BSD, X11
Lines of Code (SLOC) 6,100,000
Number of files 310,000 files
Cost Estimation (COCOMO) $ 255,000,000
Development time estimation (COCOMO) 9.41 years (112.98 months)
Estimation of mean number of developers
(COCOMO team size)

200,64

Approx. actual number of developers around 900 commiters
Number of active commiters in the last two
years

around 600 (65% of the total)

Number of commits in the CVS approx. 2,000,000
Mean number of commits per day 1,700
Tools, documentation and events that help
development

CVS, mailing lists, web sites,news sites,
periodical meetings...

l) GNOME

 The GNOME project has as primary aim to build up a complete, free and easy-to-

use end-user desktop system. In addition, GNOME has pretensions of becoming a

powerful development platform for the developer. GNOME is part of the GNU project

and currently all its code base is released under a GNU GPL or GNU LGPL license.

 GNOME is the response of some community members to the KDE licensing

debates of 1997. Some developers, most notably Miguel de Icaza, started to develop an

alternative desktop to KDE that would always be completely free (i.e. as in the freedoms

of “free software”).

i) The GNOME Foundation

 In October 2000, the GNOME Foundation was created. It is a non-profit

organization but not a consortium of companies. It is responsible for coordinating

releases, decides which subprojects form part of GNOME, and is the 'official' voice for

the press and external organizations and promotes the project by means of conferences,

GPOSS adv-1 21 October, 2004 48

standards and other activities. The GNOME Foundation also accepts funds to be used to

sponsor its activities.

 In general terms, the GNOME Foundation is structured with two boards: the

board of directors and the advisory board. The board of directors is composed of at most

14 members elected democratically every year by all members of the foundation. Anyone

who has contributed in some way (not necessarily software code, but also documentation,

translation, etc) can become a member of the GNOME Foundation and hence have the

right to vote. There are some restrictions placed on the board of directors in order to

guarantee its transparency. For instance, at most four members of this board may be

affiliated to a single company. In any case, an elected director performs as a private

individual, not representing an organisation. This clause was introduced in order to

ensure transparency of motives.

 The other board of the GNOME Foundation is the advisory board which has no

decision-making powers. It is formed by industrial partners as well as non-commercial

organizations interested in the development of GNOME. Currently these are Red Hat,

Novell, Hewlett-Packard, Mandrake, SUN Microsystems, Red Flag Linux (from China),

Wipro (from India), Debian and the Free Software Foundation.

ii) Industry around GNOME

 GNOME has achieved a substantial presence in the computer industry. Several

enterprises are very active in its development and promotion. The most significant cases

are Ximian Inc. (now part of Novell) and the no longer operational Eazel which were

start-up companies founded with the aim of developing GNOME. RHAD Labs from Red

Hat and recently SUN Microsystems have also about a dozen developers each devoted to

this project.

GPOSS adv-1 21 October, 2004 49

iii) Statistics of GNOME

Table 1-3. Statistics of GNOME
Web Site http://www.gnome.org
Project start September 1997
License GNU GPL and GNU LGPL
Lines of Code (SLOC) 9,200,000
Number of files 228,000
Cost Estimation (COCOMO) $ 400,000,000
Development time estimation (COCOMO) 11,08 years (133,02 months)
Estimation of mean number of developers
(COCOMO team size)

250 approx.

Number of subprojects it has more than 700 modules in its CVS
Approx. actual number of developers almost 1000 with write permission
Number of active commiters in the last two
years

around 700 (75% of the total)

Number of commits to the CVS 1,900,000
Number of mean commits per day around 900
Main development tools CVS, mailing lists, web sites, news sites, yearly

meetings...

m) Debian GNU/Linux

 Debian is a free operating system that currently uses the Linux kernel to produce

its distribution (although distributions with other kernels like The HURD are planned in

the future). It is available for several computer architectures, including Intel x86, ARM,

Motorola, 680x0, PowerPC, Alpha and SPARC.

 Debian is not only the biggest GNU/Linux distribution currently; it is one of the

most reliable and has been given awards several times by users and by technical

publications. Although its user base is difficult to estimate as the Debian project does not

sell CDs directly, and anybody has the right to redistribute it freely, it would be fair to

say that it is one of the most important distributions in the GNU/Linux market. It is the

basis for many “modified GNU/Linux” projects around the world (including GNU/LinEx

in Extremadura, Spain) and according to the FLOSS Developer Survey, the most popular

distribution in terms of use by developers themselves.

 Besides its voluntary nature, the Debian project has a characteristic that makes it

especially singular: the Debian Social contract. This document contains not only the

GPOSS adv-1 21 October, 2004 50

primary objectives of the Debian project but also the means that will be used to achieve

them. In Debian we can find a categorization of the packages by their license and the

distribution requisites. The main part of the Debian distribution (the section called main

which is composed of a big number of packages) contains only software that follows the

Debian Free Software Guidelines (DFSG), which is part of the Social Contract.

 Debian distributions are created by over a thousand volunteers (mostly IT

professionals). The task of these volunteers is to take the source code of programs – of

which in most cases they are not the original authors – and configure, compile and

package them so that the typical user has only to select it a program in order to install it.

This may be thought of as a simple task but is quite complicated as factors such as

software dependencies have to be taken into account (for instance, when package A needs

package B to work, a common occurrence) and the selection from various versions of all

these packages.

 The technical work that is undertaken by the members of the Debian project is

the same that is realized in other distributions produced by companies (such as Red Hat

or SuSE/Novell): software integration for its smooth functioning. In addition to the

adapting and packaging tasks, Debian developers maintain an infrastructure of services

that are based on the Internet (web page, mailing lists and their archives, bug tracking

system, file download repositories, etc.), as well as other projects that are focused on

translations and localization, the development of Debian-specific tools and in general any

other element that makes the Debian distribution possible.

 Debian is also known for having a strict package and versioning policy in order

to achieve a better quality of the end product. Hence, at any given moment there exist

three different flavors of Debian: a stable, an unstable and a test version. As its name

indicates the stable version is the one that is targeted to systems and persons that do not

want any surprises. Its software has to pass a quarantine period in which only bugs will

be fixed and no developments or improvements made. The norm says that a stable

Debian version cannot contain any known critical error. On the other hand, this makes the

stable versions exclude the latest and more novel additions to the software.

GPOSS adv-1 21 October, 2004 51

i) Statistics of Debian

 The last stable Debian version is Debian 3.0 which obtained the nickname
Woody released in 2002. It contains 4,579 source code packages and around 10,000
binary packages. Debian is hence one of the biggest integrated software collections that
exists.

Table 4. Statistics of Debian
Web Site http://www.debian.org
Project start 16.8.1993
Licenses The ones that comply with the DFSG
Current (stable) version Debian 3.0 (alias Woody)
Lines of Code (SLOC) 105,000,000
Number of packages 4,579
Cost Estimation (COCOMO) 3,625,000,000 $
Development time estimation (COCOMO) 7 years
Estimation of mean number of developers
(COCOMO team size)

around 4,000

Approx. number of developers (Debian
maintainers/integrators only, not developers of
individual packages)

Around 1,000

Main development tools Mailing lists, bug-tracking system

n) GNU/LinEx

 GNU/LinEx is the consequence of the political strategy of the Spanish region of

Extremadura. It has been conceived with the aim of making Extremadura -one of the

poorest regions in Spain and in the former EU15- a leading one in technologies related to

the knowledge era. The efforts of the regional government are not limited to public

administration and education as its intention is to make Linex been widely used also in

the private sector. The project has been funded from two different sources: the first one

was the regional government of Extremadura, while some funds were European Union

FEDER (European Union Funds for Regional Development).

 The history of GNU/Linex begins in 1998 when the regional government looked

for a way of introducing the region into the new computing era without leaving anybody

out of it. The cost calculations made not possible to use solutions that were introduced in

that days. Instead the free software products offered an interesting -although then

unexplored- starting point. The Linex project was created mainly because of economical

GPOSS adv-1 21 October, 2004 52

http://www.debian.org/

reasons, but with time a shift of the project towards the fundamental ideas of the free

software movement can be observed, branding the project finally GNU/Linex.

 In the year 2000, the education administration was transfered by the Spanish

central government to the regional government of Extremadura (Junta). A free software

solution began to be studied in 2001 and the decision to make an own distribution was

taken in November that year. The first version of GNU/Linex (version 2.0) was released

March 2002 and was elaborated by a Spanish private startup company. Following

versions were developed by staff from the Junta, associated organisations and volunteers.

GNU/Linex 3.0 was released June 2002 and the last version GNU/Linex 2004 appeared

in August 2004.

 Technically GNU/Linex is based on the Debian distribution. This means that

GNU/Linex is a modified Debian: the base system has been taken from Debian and

software which has been identified as strategical for the aims of the project has been

packaged and included, and default configurations have been made for the purposes of

localisation (e.g. default usage of Spanish).

As GNU/LinEx is not an independent software project, it is not possible to make a

statistical analysis similar to the above projects. In a sense, Extremadura has leveraged

the tremendous existing and on-going investment in terms of time and effort of Debian

contributors and benefits from having made a relatively affordable contribution: the Junta

says it has spent only Euro 300 000 on the system, much of which is for material costs

(printing and distributing manuals and CDs). On the other hand, the Junta claims to have

saved over 1000 euro in software costs for every desktop set up with GNU/Linex and

related software, rather than the proprietary equivalents. With an installed base of over 80

000, the savings are therefore significant. See the case study of Extremadura on the IDA

Open Source Observatory (OSO)20 for links and further information.

As GNU/LinEx is integrated with Debian as a localised version, it is not very

meaningful to generate statistics as with the previously described projects.

20 http//:www.europa.eu.int/ida/oso

GPOSS adv-1 21 October, 2004 53

References

Bezroukov, N. (1996): Portraits of free software pioneers. http://www.softpanorama.org/People/
(September 3, 2003).

Bonnaccorsi, A. & Rossi, C. (2002): Why Open Source software can succeed. Accessible online
at http://opensource.mit.edu/papers/bnaccorsirossimotivationshort.pdf latest access
September 3, 2003.

Bonnaccorsi, A. & Rossi, C. (2003): Altruistic Individuals, Selfish Firms? The Structure of
Motivation in Open Source Software. http://opensource.mit.edu/papers/bnaccorsirossimotiva-
tionshort.pdf (September 3, 2003)

Butler, B.; Sproull, L.; Kiesler, S.; Kraut, R. (2002): Community effort in online groups: who
does the work an why? Accessible online at http://opensource.mit.edu/papers/butler.pdf,
latest access March 22, 2003.

Castells, M. & Himanen, P. (2002): The Information Society and the Welfare State. The Finnish
Model. Oxford: Oxford University Press.

Ciborra, C. U.; Andreu, R. (2001): Sharing knowledge across boundaries. In: Journal of
Information Technology, No. 16, pp. 73-81

Dempsey, B. J.; Weiss, D.; Jones, P.; Greenberg, J. (2002): Who is an free software developer?
Profiling a community of Linux developers. In: Communications of the ACM, Volume 45,
No. 2 (February 2002); pp. 67-72.

DiBona, C.; Ockman, S.; Stone, M.: Introduction. In: DiBona, C., Ockman, S.; Stone, M. (eds.):
Free softwares: voices from the free software revolution. Sebastopol, California: O’Reilly.
Accessible online at http://www.oreilly.com/catalog/opensources/book/intro.html. Latest
access: March 23, 2002

Ettrich, M. (2000): Wer kodiert? In: iX, No. 1/2000; p. 112. http://www.heise.de/ix/artikel/-
2000/01/112/.

Feller, J. & Fitzgerald, B. (2000): A framework analysis of the open source software development
paradigm. In: Proceedings of the 21st international conference on information systems,
Brisbane, Queensland, Australia, p. 58-69.

Feller, J. & Fitzgerald, B. (2001): Understanding open source software development. Pearson
Education.

Fitzgerald, B & Kenny, T. (2003): Open source software in the trenches: lessons from a large-
scale OSS implementation. At Twenty-Fourth International Conference on Information
Systems

Franke, N.; Shah, S. (2001): How communities support innovative activities: An exploration of
assistance and sharing among innovative users of sporting equipment. In: Sloan Working
Paper No. 4164, accessible online at http://opensource.mit.edu/papers/frankeshah.pdf, latest
access August 7, 2002

Garzarelli, G. (2002): Open source software and the economics of organization. accessible online
at http://opensource.mit.edu/papers/garzarelli.pdf, latest access August 7, 2002

GPOSS adv-1 21 October, 2004 54

http://%1Fo%1Fpen%1Fsour%1Fce.%1Fmit.%1Fedu/%1Fpa%1Fpers/%1Fbnaccorsi%1Frossi%1Fmo%1Fti%1Fva%1Ftion%1Fshort.%1Fpdf
http://%1Fo%1Fpen%1Fsour%1Fce.%1Fmit.%1Fedu/%1Fpa%1Fpers/%1Fbnaccorsi%1Frossi%1Fmo%1Fti%1Fva%1Ftion%1Fshort.%1Fpdf
http://%1Fo%1Fpen%1Fsour%1Fce.%1Fmit.%1Fedu/%1Fpa%1Fpers/%1Fbnaccorsi%1Frossi%1Fmo%1Fti%1Fva%1Ftion%1Fshort.%1Fpdf

Ghosh, R. A. (1998a): Cooking pot markets: an economic model for the trade in free goods and
services on the Internet. Accessible online at http://firstmonday.org/issues/issue3_3/Ghosh/in-
dex.html; latest access March 26, 2002.

Ghosh, R. A. (1998b): Interview with Linus Torvalds on the economics of free software.
Accessible online at http://firstmonday.org/issues/issue3_3/

Ghosh, R. A. and Prakash, V. V. (2000): The Orbiten free software survey. First Monday, vol. 5,
no. 7 (July 2000), URL: http://firstmonday.org/issues/issue5_7/Ghosh/index.html; latest
access March 26, 2002.

Ghosh, R. A.; Glott, R.; Krieger, B.; Robles, G. (2002): Free/Libre and Open Source Software:
Survey and Study. Part IV: Survey of Developers. http://www.infonomics.nl/FLOSS/report/-
Final4.htm. Maastricht: International Institute of Infonomics / Merit

Ghosh, R. A.; Robles, G. & Glott, R. (2002): Free/Libre and Open Source Software: Survey and
Study. Part V: Source Code Survey. http://www.infonomics.nl/FLOSS/report/Final5all.htm.
Maastricht: International Institute of Infonomics / Merit

Ghosh, R. A. (2003): Understanding Free Software Developers: Findings from the FLOSS Study.
Paper presented at HBS - MIT Sloan Free/Open Source Software Conference: New Models
of Software Development. June 19-20, 2003, Boston and Cambridge, MA

Hars, A.& Ou, S. (2001): Working for free? – Motivations participating in free software projects.
In: IEEE (ed.): Proceedings of the 34th Hawaii International Conference on System Sciences.

Hertel, G.; Niedner, N.; Herrmann, S. (2003): Motivation of Software Developers in Free
software Projects: An Internet-based Survey of Contributors to the Linux Kernel. Paper
presented at HBS - MIT Sloan Free/Open Source Software Conference: New Models of
Software Development. June 19-20, 2003, Boston and Cambridge, MA

Himanen, P. (2001): The Hacker Ethic and the Spirit of the Information Age. New York,
Toronto: Random House.

Hippel, E. von & Krogh, G. von (2002): Exploring the open source software phenomenon: Issues
for organization science. Accessible online at http://opensource.mit.edu/papers/hippel.pdf,
latest access: September 3, 2003

Kohn, A. (1987): Studies Find Reward Often No Motivator. http://www.gnu.org/philosophy/mo-
tivation.html (September 3, 2003) [Reprint version, text was originally published in the
Boston Globe, January 19, 1987]

Lakhani, K.& Hippel, E. (2000): How Open Source Software Works: “Free” User-to-User
Assistance. MIT Sloan School of Management Working Paper No. 4117 (May 2000).

Lakhani, K. R.; Wolf, B.; Bates, J. & DiBona, C. (2002): The Boston Consulting Group Hacker
Survey, release 0.73, in cooperation with OSDN.
http://www.osdn.com/bcg/BCGHACKERSURVEY-0.73.pdf, latest access September 5,
2003

Lee, S., Moisa, N. & Weiss, M. (2003): Free software as a Signalling Device – an Economic
Analysis. In: Department of Economics of the Johann-Wolfgang-Goethe University (ed.);
Working Paper Series: Finance and Accounting, NO. 102, March 2003. Frankfurt/Main:
Johann-Wolfgang-Goethe University.

GPOSS adv-1 21 October, 2004 55

http://%1Fwww.%1Fin%1Ffo%1Fno%1Fmics.%1Fnl/%1FFLOSS/%1Fre%1Fport/%1FFi%1Fnal4.%1Fhtm
http://%1Fwww.%1Fin%1Ffo%1Fno%1Fmics.%1Fnl/%1FFLOSS/%1Fre%1Fport/%1FFi%1Fnal4.%1Fhtm
http://%1Fwww.%1Fin%1Ffo%1Fno%1Fmics.%1Fnl/%1FFLOSS/%1Fre%1Fport/%1FFi%1Fnal5all.%1Fhtm
http://%1Fo%1Fpen%1Fsour%1Fce.%1Fmit.%1Fedu/%1Fpa%1Fpers/%1Fbnaccorsi%1Frossi%1Fmo%1Fti%1Fva%1Ftion%1Fshort.%1Fpdf
http://%1Fwww.%1Fgnu.%1Forg/%1Fphi%1Flo%1Fso%1Fphy/%1Fmo%1Fti%1Fva%1Ftion.%1Fhtml
http://%1Fwww.%1Fgnu.%1Forg/%1Fphi%1Flo%1Fso%1Fphy/%1Fmo%1Fti%1Fva%1Ftion.%1Fhtml

Lerner, J.; Tirole, J. (2000): The simple economics of free software. NBER Working Paper
Series, Working Paper 7600, National Bureau of Economic Research, Cambridge,
Massachusetts, March 2000.

MITRE (2003): Use of Free and Open-Source Software (FOSS) in the U.S. Department of
Defense. Prepared for the US Defense Information Services Agency.
http://www.microcross.com/dodfoss.pdf; latest access October 29, 2004.

Moon, J. Y.; Sproull, L. (2000): Essence of distributed work: The case of the Linux kernel. In:
First Monday, accessible online at http://firstmonday.org/issues/issue5_11/Moon/index.html;
latest access March 27, 2002.

O’Reilly, T. (1999): Lessons from open source software development. In: Communications of the
ACM, Volume 42, No. 4 (April 1999); pp. 33-37.Ousterhout, J. (1999): Free software needs
profit. In: Communications of the ACM, Vol. 42/No. 4.

Raymond, E. S. (1998a): The cathedral and the bazaar. URL: http://www.tuxedo.org/~esr/wri-
tings/cathedral-bazaar; latest access November 15, 2001.

Raymond, E. S. (1998b): Homesteading the noosphere. In: First Monday, vol. 3, no. 10 (October
1998), URL: http://firstmonday.org/issues/issue3_10/Raymond/ (September 3, 2003).

Scacchi, W. (2002): Understanding the requirements for developing open source software
systems. Accessible online at http://opensource.mit.edu/papers/Scacchi.pdf, latest access
September 3, 2003

Schmitz, P-E. (2002): Pooling Open Source Software. Accessible online at
http://www.europa.eu.int/ida/oso (see Resources section)

Shah, S. (2003): Understanding the Nature of Participation & Coordination in Open and Gated
Source Software Development Communities. Paper presented at HBS - MIT Sloan Free/Open
source software Conference: New Models of Software Development. June 19-20, 2003,
Boston and Cambridge, MA

Stallman, R. (1999): The GNU operating system and the free software movement. In: DiBona, C.,
Ockman, S., & Stone, M. (eds.): Free softwares: voices from the free software revolution.
Sebastopol, California: O’Reilly. Accessible online at
http://www.oreilly.com/catalog/opensources/book/stallman.html

Suriya, M. (2003): Gender issues in the career development of IT professionals: a global
perspective. Accessible online at http://www.gisdevelopment.net/proceedings/mapasia/2003/-
papers/i4d/i4d002.htm

Torvalds (1999): Interview with Linus Torvalds: What motivates free software developers? URL:
http://firstmonday.org/issues/issue3_3/Torvalds/index..html; latest access March 26, 2002.

Wenger, E. (2000): Communities of practice – learning as a social system. Accessible online at:
http://www.co-I-l.com/coil/knowledge-garden/cop/lss.shtml

Wheeler, D. A. (2002): Why open source software / free software (OSS/FS)? Look at the
numbers! Accessible online at http://www.dwheeler.com/oss_fs_why.html. Latest access:
June 14, 2002.

Young, R. (1999): Giving it away: How Red Hat stumbled across a new economic model and
helped improve an industry. In: Free softwares: Voices from the free software revolution.
Sebastopol, CA: O’Reilly & Associates.

GPOSS adv-1 21 October, 2004 56

http://www.microcross.com/dodfoss.pdf
http://%1Fo%1Fpen%1Fsour%1Fce.%1Fmit.%1Fedu/%1Fpa%1Fpers/%1Fbnaccorsi%1Frossi%1Fmo%1Fti%1Fva%1Ftion%1Fshort.%1Fpdf

	Executive summary
	2) Introduction to free software development
	a) What is free software?
	b) Organisation of free software developer communities
	c) Motives of free software developers
	3) External incentives
	a) How free software projects relate to external funding
	b) How free software projects relate with specific user communities

	4) How to collaborate with free software developers
	a) Identify the “seed” – what will attract developers?
	b) Disseminate to reach out to the developer community
	c) Attract a community to solve a problem (e.g. LinEx, Spanish Linux for Extremadura)
	d) (or) Attract a community to support a pre-existing software application
	e) Provide or identify collaborative development infrastructure (e.g. Berlios, US-based SourceForge)
	f) Cooperate and proactively provide feedback
	g) Identify community leaders
	h) Identify selection mechanism to balance competition with cooperation between developers
	i) Identify funding methods if required
	j) Monitor and evaluate results
	k) Involve other public administrations

	5) Legal relationships
	a) Identify the relationships
	A1
	B1
	B3
	C1
	C3

	b) Possible cases, and corresponding contractual relations
	i) Case 1 (solution developed from scratch for the PA)
	ii) Case 2 (Specific open source software, found externally)
	
	

	iii) Case 3 (solution developed by a PA, with possible pooling or reuse)
	iv) Case 4 (Specific solution, developed internally by the PA, so far)
	

	v) Case 5 (same as 4, with a service partner)
	

	

	c) Choosing the licence
	d) Recommendations concerning the license

	 Appendix 1: Organisation, motivation and external interaction
	e) How free software developer communities work
	f) Organisation of free software developer communities
	g) Motives of free software developers
	h) How free software projects interact with external feedback
	i) Paying for free software

	 Appendix 2: A closer look at selected development projects
	j) FreeBSD
	i) History of FreeBSD
	ii) Development in FreeBSD
	iii) Decision-taking in FreeBSD
	iv) Companies around FreeBSD
	v) Statistics of FreeBSD

	k) KDE
	i) KDE development
	ii) Statistics of KDE

	l) GNOME
	i) The GNOME Foundation
	ii) Industry around GNOME
	iii) Statistics of GNOME

	m) Debian GNU/Linux
	i) Statistics of Debian

	n) GNU/LinEx

	References

